organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Benzoic acid_4-{(1*E*)-[(*E*)-2-(pyridin-4-ylmethylidene)hydrazin-1-ylidene]methyl}pyridine (2/1)

Hadi D. Arman,^a Trupta Kaulgud^a and Edward R. T. Tiekink^b*

^aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: edward.tiekink@gmail.com

Received 14 October 2010; accepted 15 October 2010

Key indicators: single-crystal X-ray study; T = 98 K; mean σ (C–C) = 0.004 Å; R factor = 0.072; wR factor = 0.191; data-to-parameter ratio = 12.5.

In the title co-crystal, $C_{12}H_{10}N_4 \cdot 2C_7H_6O_2$, the complete 4pyridinealdazine molecule is generated by a crystallographic centre of inversion. In the crystal, molecules are connected into a three component aggregate *via* O-H···N hydrogen bonds. As both the benzoic acid [O-C-C-C torsion angle = 174.8 (2)°] and 4-pyridinealdazine (r.m.s. deviation of the 16 non-H atoms = 0.041 Å) molecules are almost planar, the resulting three-component aggregate is essentially planar. The crystal packing comprises layers of the three-component aggregates of alternating orientation stacked along the *b* axis; the connections between the molecules are of the types C-H··· π and π - π [pyridine-benzene centroid-centroid distance = 3.787 (4) Å].

Related literature

For related studies on co-crystal formation involving the isomeric *n*-pyridinealdazines, see: Broker *et al.* (2008); Arman *et al.* (2010a,b).

Experimental

Crystal data C₁₂H₁₀N₄·2C₇H₆O₂

 $M_r = 454.48$

Monoclinic, $P2_1/n$ a = 6.873 (6) Å b = 26.059 (19) Å c = 7.117 (6) Å $\beta = 116.245$ (13)° V = 1143.3 (16) Å³

Data collection

Rigaku AFC12/SATURN724 diffractometer 6111 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.072$ $wR(F^2) = 0.191$ S = 1.121956 reflections 157 parameters 1 restraint Z = 2Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 98 K $0.40 \times 0.26 \times 0.08 \text{ mm}$

1956 independent reflections 1620 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.063$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.30 \text{ e } \text{\AA}^{-3} \\ &\Delta\rho_{min}=-0.28 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C2–C7 ring.

$D - H \cdots A$	$D-{\rm H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D1 - H1o \cdots N1^{i}$ $C6 - H6 \cdots Cg1^{ii}$	0.85 (3) 0.95	1.80 (3) 2.64	2.642 (4) 3.540 (5)	175 (4) 159
Symmetry codes: (i) r	x = 1 (ii) x	$\pm 1 - \nu \pm 1 - \pi \pm 1$	1	

Symmetry codes: (i) x, y, z - 1; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *CrystalClear* (Molecular Structure Corporation & Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5684).

References

Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, 02356.
Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, 02629.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2010). E66, o2924 [doi:10.1107/81600536810041875]

Benzoic acid-4-{(1E)-[(E)-2-(pyridin-4-ylmethylidene)hydrazin-1-ylidene]methyl}pyridine (2/1)

H. D. Arman, T. Kaulgud and E. R. T. Tiekink

Comment

In connection with co-crystallization studies of the isomeric n-pyridineal dazines (Broker *et al.*, 2008; Arman *et al.*, 2010*a*,*b*), the co-crystallization of benzoic acid and 4-pyridineal dazine was investigated. This lead to the isolation of the title 2/1 co-crystal, (I).

The asymmetric unit in (I) comprises a molecule of benzoic acid, Fig. 1, and half a molecule of 4-pyridinealdazine, with the latter disposed about a centre of inversion, Fig. 2. The constituents of (I) are connected by O—H···N hydrogen bonds, Table 1, to generate a centrosymmetric three component aggregate. The carboxylic acid group is co-planar with the benzene ring to which it is connected [the O1—C1—C2—C3 torsion angle is 174.8 (2) °] and, similarly, the 4-pyridinealdazine molecule is planar with the r.m.s. deviation of the 16 non-hydrogen atoms being 0.041 Å [maximum deviation = 0.075 (3) Å for the methylene-C13 atom]. Accordingly, the three component aggregate is essentially planar.

In the crystal packing, layers of three component aggregates of alternating orientation stack along the *b* axis, Fig. 3. Connections between the molecules are of the type C—H··· π , Table 1, and π – π [ring centroid(N1,C8–C12)···ring centroid(C2–C7) = 3.787 (4) Å].

Experimental

Yellow blocks of (I) were isolated from the 2/1 co-crystallization of 2-phenylacetic acid (Sigma Aldrich) and 4-[(1*E*)-[(*E*)-2-(pyridin-4-ylmethylidene)hydrazin-1-ylidene]methyl]pyridine(Sigma Aldrich), in ethanol; m. pt. 395–397 K.

IR assignment (cm⁻¹): 2923 v(C—H); 1693 v(C=O); 1602 v(C=N); 1492, 1453, 1409 v(C—C(aromatic)); 1306 v(C—N); 817, 716 \delta(C—H).

Refinement

C-bound H-atoms were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation with $U_{iso}(H)$ set to $1.2U_{eq}(C)$. The O-bound H-atom was located in a difference Fourier map and was refined with a distance restraint of O–H 0.84±0.01 Å, and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. Molecular structure of benzoic acid found in the structure of (I) showing displacement ellipsoids at the 50% probability level

Fig. 2. Molecular structure of 4-pyridinealdazine found in the structure of (I) showing displacement ellipsoids at the 50% probability level. The molecule is disposed about a centre of inversion with i = 1 - x, -y, 1 - z.

Fig. 3. A view in projection down the *a* axis showing the stacking of layers comprising three component aggregates along *b*. The O—H···N, C—H··· π and π - π interactions are shown as orange, purple and blue dashed lines, respectively.

Benzoic acid-4-{(1*E*)-[(*E*)-2-(pyridin-4-ylmethylidene)hydrazin- 1-ylidene]methyl}pyridine (2/1)

F(000) = 476 $D_{\rm x} = 1.320 \text{ Mg m}^{-3}$

 $\theta = 3.3-40.2^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 98 KBlock, yellow

 $0.40 \times 0.26 \times 0.08 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 4161 reflections

Crystal data
$C_{12}H_{10}N_4 \cdot 2C_7H_6O_2$
$M_r = 454.48$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 6.873 (6) Å
<i>b</i> = 26.059 (19) Å
<i>c</i> = 7.117 (6) Å
$\beta = 116.245 \ (13)^{\circ}$
$V = 1143.3 (16) \text{ Å}^3$
Z = 2

Data collection

Rigaku AFC12K/SATURN724 diffractometer	1620 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.063$
graphite	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
ω scans	$h = -8 \rightarrow 8$
6111 measured reflections	$k = -30 \rightarrow 30$
1956 independent reflections	$l = -8 \rightarrow 6$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.072$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.191$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.12	$w = 1/[\sigma^2(F_o^2) + (0.083P)^2 + 0.7947P]$ where $P = (F_o^2 + 2F_c^2)/3$

1956 reflections	$(\Delta/\sigma)_{max} < 0.001$
157 parameters	$\Delta\rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.2366 (3)	0.14824 (8)	0.4031 (3)	0.0367 (5)
H1o	0.254 (6)	0.1339 (13)	0.305 (4)	0.055*
O2	-0.0291 (3)	0.09135 (7)	0.3447 (3)	0.0348 (5)
C1	0.0732 (4)	0.12953 (10)	0.4330 (4)	0.0279 (6)
C2	0.0247 (4)	0.15989 (10)	0.5862 (4)	0.0272 (6)
C3	-0.1544 (5)	0.14691 (10)	0.6194 (4)	0.0294 (6)
Н3	-0.2428	0.1185	0.5480	0.035*
C4	-0.2032 (5)	0.17572 (11)	0.7573 (4)	0.0363 (7)
H4	-0.3265	0.1673	0.7784	0.044*
C5	-0.0723 (6)	0.21684 (12)	0.8644 (5)	0.0422 (8)
Н5	-0.1061	0.2363	0.9591	0.051*
C6	0.1078 (6)	0.22960 (12)	0.8335 (5)	0.0415 (8)
Н6	0.1974	0.2576	0.9074	0.050*
C7	0.1563 (5)	0.20132 (11)	0.6942 (4)	0.0334 (7)
H7	0.2788	0.2101	0.6723	0.040*
N1	0.2915 (4)	0.09852 (9)	1.1065 (3)	0.0308 (6)
N2	0.5060 (4)	0.01762 (9)	0.5783 (3)	0.0316 (6)
C8	0.3397 (4)	0.03986 (10)	0.8005 (4)	0.0268 (6)
C9	0.1647 (4)	0.03201 (10)	0.8464 (4)	0.0285 (6)
Н9	0.0594	0.0065	0.7743	0.034*
C10	0.1466 (5)	0.06209 (10)	0.9991 (4)	0.0312 (7)
H10	0.0264	0.0567	1.0288	0.037*
C11	0.4597 (4)	0.10580 (11)	1.0616 (4)	0.0293 (6)
H11	0.5632	0.1315	1.1365	0.035*
C12	0.4898 (5)	0.07771 (10)	0.9114 (4)	0.0297 (6)
H12	0.6110	0.0842	0.8843	0.036*
C13	0.3593 (4)	0.00791 (10)	0.6385 (4)	0.0278 (6)
H13	0.2627	-0.0200	0.5783	0.033*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0403 (12)	0.0415 (12)	0.0340 (12)	-0.0088 (9)	0.0215 (9)	-0.0103 (9)
O2	0.0347 (11)	0.0351 (11)	0.0342 (11)	-0.0036 (9)	0.0150 (9)	-0.0074 (8)
C1	0.0293 (14)	0.0281 (14)	0.0218 (14)	0.0032 (11)	0.0073 (11)	0.0008 (10)
C2	0.0322 (14)	0.0282 (14)	0.0206 (13)	0.0035 (11)	0.0112 (11)	0.0028 (10)
C3	0.0353 (15)	0.0253 (14)	0.0256 (14)	0.0018 (11)	0.0116 (11)	0.0043 (11)
C4	0.0401 (17)	0.0392 (16)	0.0346 (16)	0.0054 (13)	0.0210 (13)	0.0058 (12)
C5	0.059 (2)	0.0381 (17)	0.0346 (17)	0.0030 (15)	0.0255 (15)	-0.0042 (13)
C6	0.0503 (19)	0.0390 (17)	0.0370 (17)	-0.0072 (14)	0.0210 (14)	-0.0098 (13)
C7	0.0371 (16)	0.0337 (16)	0.0293 (15)	-0.0027 (12)	0.0145 (12)	-0.0005 (11)
N1	0.0353 (13)	0.0328 (13)	0.0241 (12)	0.0048 (10)	0.0130 (10)	0.0024 (9)
N2	0.0405 (14)	0.0303 (13)	0.0235 (12)	0.0005 (10)	0.0138 (11)	-0.0029 (9)
C8	0.0301 (14)	0.0278 (14)	0.0211 (13)	0.0076 (11)	0.0100 (11)	0.0044 (10)
C9	0.0313 (14)	0.0321 (14)	0.0198 (13)	0.0020 (11)	0.0091 (11)	0.0013 (10)
C10	0.0295 (15)	0.0341 (15)	0.0286 (15)	0.0027 (11)	0.0115 (12)	0.0031 (11)
C11	0.0300 (14)	0.0302 (14)	0.0250 (14)	0.0018 (11)	0.0098 (11)	0.0002 (10)
C12	0.0298 (14)	0.0323 (15)	0.0263 (14)	0.0024 (11)	0.0118 (12)	0.0011 (11)
C13	0.0328 (14)	0.0246 (13)	0.0234 (14)	0.0025 (11)	0.0100 (11)	0.0022 (10)

Geometric parameters (Å, °)

O1—C1	1.325 (3)	N1—C11	1.342 (4)
01—H10	0.85 (3)	N1—C10	1.343 (4)
O2—C1	1.220 (3)	N2—C13	1.283 (4)
C1—C2	1.499 (4)	N2—N2 ⁱ	1.418 (4)
C2—C3	1.395 (4)	C8—C12	1.393 (4)
C2—C7	1.400 (4)	C8—C9	1.394 (4)
C3—C4	1.389 (4)	C8—C13	1.476 (4)
С3—Н3	0.9500	C9—C10	1.390 (4)
C4—C5	1.390 (4)	С9—Н9	0.9500
C4—H4	0.9500	C10—H10	0.9500
C5—C6	1.390 (5)	C11—C12	1.384 (4)
С5—Н5	0.9500	C11—H11	0.9500
C6—C7	1.389 (4)	С12—Н12	0.9500
С6—Н6	0.9500	С13—Н13	0.9500
С7—Н7	0.9500		
C1—O1—H10	114 (3)	С2—С7—Н7	120.0
O2—C1—O1	123.6 (3)	C11—N1—C10	117.7 (2)
O2—C1—C2	122.8 (3)	C13—N2—N2 ⁱ	110.7 (3)
O1—C1—C2	113.6 (2)	C12—C8—C9	118.1 (2)
C3—C2—C7	119.9 (3)	C12—C8—C13	122.8 (3)
C3—C2—C1	119.5 (2)	C9—C8—C13	119.1 (2)
C7—C2—C1	120.6 (3)	С10—С9—С8	119.0 (3)
C4—C3—C2	119.7 (3)	С10—С9—Н9	120.5
С4—С3—Н3	120.1	С8—С9—Н9	120.5

120.1	N1—C10—C9	122.9 (3)
120.3 (3)	N1-C10-H10	118.5
119.8	C9—C10—H10	118.5
119.8	N1-C11-C12	123.2 (3)
120.2 (3)	N1—C11—H11	118.4
119.9	C12—C11—H11	118.4
119.9	C11—C12—C8	119.1 (3)
119.8 (3)	C11—C12—H12	120.5
120.1	C8—C12—H12	120.5
120.1	N2—C13—C8	120.4 (2)
120.1 (3)	N2—C13—H13	119.8
120.0	C8—C13—H13	119.8
-5.1 (4)	C12—C8—C9—C10	0.2 (4)
174.8 (2)	C13—C8—C9—C10	180.0 (2)
175.5 (2)	C11—N1—C10—C9	0.3 (4)
-4.6 (4)	C8—C9—C10—N1	-0.4 (4)
1.0 (4)	C10-N1-C11-C12	0.0 (4)
-178.4 (2)	N1-C11-C12-C8	-0.1 (4)
-1.0 (4)	C9—C8—C12—C11	0.1 (4)
0.3 (4)	C13—C8—C12—C11	-179.7 (2)
0.3 (5)	N2 ⁱ —N2—C13—C8	-179.7 (2)
-0.3 (5)	C12—C8—C13—N2	-7.2 (4)
-0.3 (4)	C9—C8—C13—N2	173.0 (2)
179.1 (2)		
	120.1 120.3 (3) 119.8 119.8 120.2 (3) 119.9 119.9 119.8 (3) 120.1 120.1 120.1 (3) 120.0 -5.1 (4) 174.8 (2) 175.5 (2) -4.6 (4) 1.0 (4) -178.4 (2) -1.0 (4) 0.3 (5) -0.3 (5) -0.3 (4) 179.1 (2)	120.1N1—C10—C9120.3 (3)N1—C10—H10119.8C9—C10—H10119.8N1—C11—C12120.2 (3)N1—C11—H11119.9C12—C11—H11119.9C12—C11—H11119.9C11—C12—C8119.8 (3)C11—C12—H12120.1C8—C12—H12120.1N2—C13—C8120.1 (3)N2—C13—H13120.0C8—C13—H13-5.1 (4)C12—C8—C9—C10174.8 (2)C13—C8—C9—C10175.5 (2)C11—N1—C10—C9-4.6 (4)C8—C9—C10—N11.0 (4)C10—N1—C11—C12-178.4 (2)N1—C11—C12—C8-1.0 (4)C13—C8—C12—C110.3 (5)N2 ⁱ —N2—C13—C8-0.3 (5)C12—C8—C13—N2-0.3 (4)C9—C8—C13—N2179.1 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1o…N1 ⁱⁱ	0.85 (3)	1.80 (3)	2.642 (4)	175 (4)
C6—H6···Cg1 ⁱⁱⁱ	0.95	2.64	3.540 (5)	159
Symmetry codes: (ii) $x, y, z-1$; (iii) $x+1/2, -y+1/2$	/2, <i>z</i> +1/2.			

